Long-term administration of angiotensin (1-7) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling

长期服用血管紧张素 (1-7) 可通过减少氧化应激、炎症和病理重塑来预防 2 型糖尿病 (db/db) 小鼠模型中的心肺功能障碍

阅读:6
作者:Anna M Papinska, Maira Soto, Christopher J Meeks, Kathleen E Rodgers

Abstract

Congestive heart failure is one of the most prevalent and deadly complications of type 2 diabetes that is frequently associated with pulmonary dysfunction. Among many factors that contribute to development and progression of diabetic complications is angiotensin II (Ang2). Activation of pathological arm of renin-angiotensin system results in increased levels of Ang2 and signaling through angiotensin type 1 receptor. This pathway is well recognized for its role in induction of oxidative stress (OS), inflammation, hypertrophy and fibrosis. Angiotensin (1-7) [A(1-7)], through activation of Mas receptor, opposes the actions of Ang2 which can result in the amelioration of diabetic complications; enhancing the overall welfare of diabetic patients. In this study, 8 week-old db/db mice were administered A(1-7) daily via subcutaneous injections. After 16 weeks of treatment, echocardiographic assessment of heart function demonstrated significant improvement in cardiac output, stroke volume and shortening fraction in diabetic animals. A(1-7) also prevented cardiomyocyte hypertrophy, apoptosis, lipid accumulation, and decreased diabetes-induced fibrosis and OS in the heart tissue. Treatment with A(1-7) reduced levels of circulating proinflammatory cytokines that contribute to the low grade inflammation observed in diabetes. In addition, lung pathologies associated with type 2 diabetes, including fibrosis and congestion, were decreased with treatment. OS and macrophage infiltration were also reduced in the lungs after treatment with A(1-7). Long-term administration of A(1-7) to db/db mice is effective in improving heart and lung function in db/db mice. Treatment prevented pathological remodeling of the tissues and reduced OS, fibrosis and inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。