Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination

壁层颗粒细胞有助于维持猪卵母细胞的生长活力及其受精后的发育能力

阅读:7
作者:Takayuki Yamochi, Shu Hashimoto, Yoshiharu Morimoto

Conclusions

The data of this study thus shows that the presence of MGCs during in vitro oocyte growth plays a crucial role in supporting the developmental competence of growing porcine oocytes attached to the granulosa cells via enhancement of their viability.

Purpose

To enhance the in vitro growth of porcine oocytes, we studied the effect of mural granulosa cells (MGCs) on the viability of oocytes attached to granulosa cells (oocyte-granulosa cell complexes, OGCs) that were obtained from early antral follicles.

Results

When OGCs were cultured with MGCs for 12 days, there were significant improvement (P < 0.05) in the robustness of gap junctional communication between the oocyte and the granulosa cells (82% vs. 59%), the survival rate of oocytes (57% vs. 39%), and the diameter of survived oocytes (118 μm vs. 112 μm). The rate of oocyte release of OGCs cultured with MGCs on the 12th day (1.9%) was significantly lower than that of OGCs cultured without MGCs (26%). Complete meiotic arrest was maintained in the group with MGCs (100%), while partial resumption of spontaneous meiosis was noticed in the absence of MGCs (10-19%). Furthermore, the presence of MGCs increased the oocyte maturation rate after maturation culture in both 12- and 14-day culture groups (P < 0.05, 85-88%) compared to OGCs cultured without MGCs (48-60%). MGCs also significantly improved the blastocyst formation rate (day 7) after ICSI (P < 0.05). Conclusions: The data of this study thus shows that the presence of MGCs during in vitro oocyte growth plays a crucial role in supporting the developmental competence of growing porcine oocytes attached to the granulosa cells via enhancement of their viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。