Integrated Method to Attach DNA Handles and Functionally Select Proteins to Study Folding and Protein-Ligand Interactions with Optical Tweezers

用光镊连接 DNA 手柄和功能性选择蛋白质的综合方法研究折叠和蛋白质-配体相互作用

阅读:5
作者:Yuxin Hao, Clare Canavan, Susan S Taylor, Rodrigo A Maillard

Abstract

Optical tweezers has emerged as a powerful tool to study folding, ligand binding, and motor enzymes. The manipulation of proteins with optical tweezers requires attaching molecular handles to the protein of interest. Here, we describe a novel method that integrates the covalent attachment of DNA handles to target proteins with a selection step for functional and properly folded molecules. In addition, this method enables obtaining protein molecules in different liganded states and can be used with handles of different lengths. We apply this method to study the cAMP binding domain A (CBD-A) of Protein kinase A. We find that the functional selection step drastically improves the reproducibility and homogeneity of the single molecule data. In contrast, without a functional selection step, proteins often display misfolded conformations. cAMP binding stabilizes the CBD-A against a denaturing force, and increases the folded state lifetime. Data obtained with handles of 370 and 70 base pairs are indistinguishable, but at low forces short handles provide a higher spatial resolution. Altogether, this method is flexible, selects for properly folded molecules in different liganded states, and can be readily applicable to study protein folding or protein-ligand interactions with force spectroscopy that require molecular handles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。