Inhalational anesthetics disrupt postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia

吸入麻醉剂会破坏突触后致密蛋白 95、果蝇盘大肿瘤抑制因子和小带闭合蛋白-1 结构域蛋白的相互作用,这些相互作用对麻醉相关的几种兴奋性受体通道的作用至关重要

阅读:10
作者:Feng Tao, Qiang Chen, Yuko Sato, John Skinner, Pei Tang, Roger A Johns

Background

The authors have shown previously that inhaled anesthetics disrupt the interaction between the second postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 (PDZ) domain of postsynaptic density protein-95 (PSD-95) and the C-terminus of N-methyl-D-aspartate receptor subunits NR2A and NR2B. The study data indicate that PDZ domains may serve as a molecular target for inhaled anesthetics. However, the underlying molecular mechanisms remain to be illustrated.

Conclusion

These results suggest that inhaled anesthetics interfere with PDZ domain-mediated protein-protein interactions at several receptors important to neuronal excitation, anesthesia, and pain processing.

Methods

Glutathione S-transferase pull-down assay, coimmunoprecipitation, and yeast two-hybrid analysis were used to assess PDZ domain-mediated protein-protein interactions in different conditions. Nuclear magnetic resonance spectroscopy was used to investigate isoflurane-induced chemical shift changes in the PDZ1-3 domains of PSD-95. A surface plasmon resonance-based BIAcore (Sweden) assay was used to examine the ability of isoflurane to inhibit the PDZ domain-mediated protein-protein interactions in real time.

Results

Halothane and isoflurane dose-dependently inhibited PDZ domain-mediated interactions between PSD-95 and Shaker-type potassium channel Kv1.4 and between α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA2 and its interacting proteins-glutamate receptor-interacting protein or protein interacting with c kinase 1. However, halothane and isoflurane had no effect on PDZ domain-mediated interactions between γ-aminobutyric acid type B receptor and its interacting proteins. The inhaled anesthetic isoflurane mostly affected the residues close to or in the peptide-binding groove of PSD-95 PDZ1 and PDZ2 (especially PDZ2), while barely affecting the peptide-binding groove of PSD-95 PDZ3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。