Membrane dynamics of resting and internalin B-bound MET receptor tyrosine kinase studied by single-molecule tracking

通过单分子追踪研究静息和内化素 B 结合的 MET 受体酪氨酸激酶的膜动力学

阅读:4
作者:Marie-Lena I E Harwardt, Phoebe Young, Willem M Bleymüller, Timo Meyer, Christos Karathanasis, Hartmut H Niemann, Mike Heilemann, Marina S Dietz

Abstract

The human MET receptor tyrosine kinase contributes to vertebrate development and cell proliferation. As a proto-oncogene, it is a target in cancer therapies. MET is also relevant for bacterial infection by Listeria monocytogenes and is activated by the bacterial protein internalin B. The processes of ligand binding, receptor activation, and the diffusion behavior of MET within the plasma membrane as well as its interconnections with various cell components are not fully understood. We investigated the receptor diffusion dynamics using single-particle tracking and imaging fluorescence correlation spectroscopy and elucidated mobility states of resting and internalin B-bound MET. We show that internalin B-bound MET exhibits lower diffusion coefficients and diffuses in a more confined area in the membrane. We report that the fraction of immobile receptors is larger for internalin B-bound receptors than for resting MET. Results of single-particle tracking in cells treated with various cytotoxins depleting cholesterol from the membrane and disrupting the actin cytoskeleton and microtubules suggest that cholesterol and actin influence MET diffusion dynamics, while microtubules do not have any effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。