The roles of NADPH-oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney

NADPH-氧化酶和nNOS在糖尿病肾脏氧化应激和氧消耗增加中的作用

阅读:5
作者:Jenny Edlund, Angelica Fasching, Per Liss, Peter Hansell, Fredrik Palm

Background

Sustained hyperglycaemia induces increased renal oxygen consumption resulting in reduced oxygen availability in the diabetic kidney. We investigated the roles of the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and the neuronal nitric oxide synthase (nNOS) for the increased oxygen consumption in streptozotocin-diabetic rats.

Conclusions

Diabetes induces oxidative stress, which increases oxygen consumption in proximal tubular cells. Inhibition of either NADPH-oxidase or nNOS prevented the increased oxygen consumption. The effect of blocking both these enzymes was less than additive suggesting overlapping pathways which warrant further studies.

Methods

Oxygen consumption was measured in isolated proximal tubular cells (PTC) from streptozotocin-induced diabetic rats (n = 7-9 per group) with and without chronic treatment with apocynin, a NADPH-oxidase inhibitor, or S-methyl-L-thiocitrulline (SMTC), a selective nNOS inhibitor, or a combination of the two and the

Results

Proximal tubular cells from untreated diabetic rats had increased oxygen consumption compared to controls (40.6 +/- 7.9 versus 10.9 +/- 2.0 nmol/mg protein/min). All treatments reduced the diabetes-induced increase in oxygen consumption (apocynin 10.5 +/- 1.7, SMTC 19.7 +/- 3.0 and apocynin + SMTC 21.6 +/- 3.6 nmol/mg protein/min). Neither apocynin nor SMTC had any effect on the oxygen consumption in cells pre-incubated with ouabain, an inhibitor of active electrolyte transport. Oxidative stress was elevated in the diabetic kidney and inhibited by all treatments. The increased oxygen consumption by diabetic proximal tubular cells correlated with increased protein expressions of p47(phox) and nNOS and the treatments prevented these increases. Conclusions: Diabetes induces oxidative stress, which increases oxygen consumption in proximal tubular cells. Inhibition of either NADPH-oxidase or nNOS prevented the increased oxygen consumption. The effect of blocking both these enzymes was less than additive suggesting overlapping pathways which warrant further studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。