Incomplete Elongation of Ultra-long-chain Polyunsaturated Acyl-CoAs by the Fatty Acid Elongase ELOVL4 in Spinocerebellar Ataxia Type 34

脊髓小脑性共济失调 34 型中脂肪酸延长酶 ELOVL4 对超长链多不饱和酰基辅酶 A 的不完全延长

阅读:7
作者:Yuka Tamura, Takayuki Sassa, Takumi Nishizawa, Akio Kihara

Abstract

Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by cerebellar atrophy and ataxia. The SCA subtype SCA34 is caused by specific mutations in the gene ELOVL4, which encodes a fatty acid (FA) elongase that synthesizes ultra-long-chain (ULC; ≥C26) FAs. However, the pathogenesis and molecular mechanism that confers dominant inheritance remains unknown. Here, a cell-based assay demonstrated that each of the five known SCA34 mutants produced shorter ULC polyunsaturated FA-containing phosphatidylcholines (ULC-PCs) than wild-type protein, in the following order of severity: Q180P and T233M > W246G > I171T and L168F. Next, we generated knock-in mouse embryonic stem cells that contained heterozygous Q180P, heterozygous W246G, or homozygous W246G mutations. Neuronal differentiation-dependent production of ULC-PCs was reduced in heterozygous Q180P and homozygous W246G cells relative to control cells, and we observed shortening of the FA moiety in all mutant cells. This FA shortening was consistent with our prediction that amino acid residues substituted by SCA34 mutations are located in the transmembrane helices that interact with the ω-end region of the FA moiety of the substrate acyl-CoA. Hence, reduced levels and shortening of ULC-PCs in neurons may cause SCA34, and incomplete elongation of ULC polyunsaturated acyl-CoAs by mutated ELOVL4 may induce dominant inheritance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。