TFE3 regulates whole-body energy metabolism in cooperation with TFEB

TFE3 与 TFEB 协同调节全身能量代谢

阅读:5
作者:Nunzia Pastore, Anna Vainshtein, Tiemo J Klisch, Andrea Armani, Tuong Huynh, Niculin J Herz, Elena V Polishchuk, Marco Sandri, Andrea Ballabio

Abstract

TFE3 and TFEB are members of the MiT family of HLH-leucine zipper transcription factors. Recent studies demonstrated that they bind overlapping sets of promoters and are post-transcriptionally regulated through a similar mechanism. However, while Tcfeb knockout (KO) mice die during early embryonic development, no apparent phenotype was reported in Tfe3 KO mice. Thus raising the need to characterize the physiological role of TFE3 and elucidate its relationship with TFEB TFE3 deficiency resulted in altered mitochondrial morphology and function both in vitro and in vivo due to compromised mitochondrial dynamics. In addition, Tfe3 KO mice showed significant abnormalities in energy balance and alterations in systemic glucose and lipid metabolism, resulting in enhanced diet-induced obesity and diabetes. Conversely, viral-mediated TFE3 overexpression improved the metabolic abnormalities induced by high-fat diet (HFD). Both TFEB overexpression in Tfe3 KO mice and TFE3 overexpression in Tcfeb liver-specific KO mice (Tcfeb LiKO) rescued HFD-induced obesity, indicating that TFEB can compensate for TFE3 deficiency and vice versa Analysis of Tcfeb LiKO/Tfe3 double KO mice demonstrated that depletion of both TFE3 and TFEB results in additive effects with an exacerbation of the hepatic phenotype. These data indicate that TFE3 and TFEB play a cooperative, rather than redundant, role in the control of the adaptive response of whole-body metabolism to environmental cues such as diet and physical exercise.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。