Trigger factor chaperone acts as a mechanical foldase

触发因子伴侣作为机械折叠酶

阅读:6
作者:Shubhasis Haldar, Rafael Tapia-Rojo, Edward C Eckels, Jessica Valle-Orero, Julio M Fernandez

Abstract

Proteins fold under mechanical forces in a number of biological processes, ranging from muscle contraction to co-translational folding. As force hinders the folding transition, chaperones must play a role in this scenario, although their influence on protein folding under force has not been directly monitored yet. Here, we introduce single-molecule magnetic tweezers to study the folding dynamics of protein L in presence of the prototypical molecular chaperone trigger factor over the range of physiological forces (4-10 pN). Our results show that trigger factor increases prominently the probability of folding against force and accelerates the refolding kinetics. Moreover, we find that trigger factor catalyzes the folding reaction in a force-dependent manner; as the force increases, higher concentrations of trigger factor are needed to rescue folding. We propose that chaperones such as trigger factor can work as foldases under force, a mechanism which could be of relevance for several physiological processes.Proteins fold under mechanical force during co-translational folding at the ribosome. Here, the authors use single molecule magnetic tweezers to study the influence of chaperones on protein folding and show that the ribosomal chaperone trigger factor acts as a mechanical foldase by promoting protein folding under force.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。