Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway

RNA N6-甲基腺苷甲基转移酶样 3 与 miR-186 之间的相互作用通过 Wnt/β-catenin 信号通路调节肝母细胞瘤进展

阅读:7
作者:Xichun Cui, Zhifang Wang, Jianhao Li, Jianming Zhu, Zhigang Ren, Dandan Zhang, Wei Zhao, Yingzhong Fan, Da Zhang, Ranran Sun

Conclusions

M6A-related genes were frequently dysregulated in HB. miR-186/METTL3/Wnt/β-catenin axis might serve as novel therapeutic targets and prognostic biomarkers in HB.

Methods

The mRNA and protein expression levels of m6A-related genes were analysed using Gene Expression Omnibus (GEO) and tissue microarray (TMA) cohort. Kaplan-Meier analysis was performed to evaluate the prognostic value of m6A-related genes in HB. Knockdown of m6A-related genes was conducted to analyse its function on cell proliferation, migration and invasion. Furthermore, bioinformatics analysis and experimental verification were used to explore the potential molecular mechanism and signalling pathway.

Results

We found that most m6A-related genes were significantly upregulated in HB tumour tissues. High levels of methyltransferase-like 3 (METTL3, P = .013), YTHDF2 (P = .037) and FTO (P = .032) indicated poor clinical outcomes, and the upregulation of METTL3 was an independent prognostic factor in HB patients. Functional assays showed that knockdown of METTL3 could dramatically suppress the proliferation, migration and invasion of HB cells. In addition, METTL3 was identified to be a direct target of microRNA-186 (miR-186). Consistently, miR-186 was low expressed in HB tumour tissues. Moreover, overexpression of miR-186 significantly inhibited cell aggressive phenotype both in vitro and in vivo, while the inhibitory effect could be reversed by METTL3 overexpression. Mechanism study indicated that miR-186/METTL3 axis contributed to the progression of HB via the Wnt/β-catenin signalling pathway. Conclusions: M6A-related genes were frequently dysregulated in HB. miR-186/METTL3/Wnt/β-catenin axis might serve as novel therapeutic targets and prognostic biomarkers in HB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。