Glycosylated lysosomal membrane protein promotes tissue repair after spinal cord injury by reducing iron deposition and ferroptosis in microglia

糖基化溶酶体膜蛋白通过减少小胶质细胞中的铁沉积和铁死亡促进脊髓损伤后的组织修复

阅读:6
作者:Fangru Ouyang #, Meige Zheng #, Jianjian Li, Jinxin Huang, Jianan Ye, Jingwen Wang, Yuanzhe Zhao, Fangli Shan, Ziyu Li, Shuishen Yu, Fei Yao, Dasheng Tian, Li Cheng, Juehua Jing

Abstract

Excessive iron deposition can lead to ferroptosis, a form of iron-dependent cell death detrimental to neuronal survival. Microglia have been identified as having a high capacity for iron deposition, yet it remains unclear whether microglia undergo ferroptosis while phagocytosing excessive amounts of iron after spinal cord injury (SCI). Here, we observed scattered iron around the epicenter of the injured spinal cord at 7 days post-injury (dpi) in mice, which then accumulated in the lesion core at 14 dpi. Concurrently, microglia exhibited elevated expression of the iron-storage protein ferritin and were found to undergo ferroptosis between 7 and 28 dpi. Additionally, we noted a gradual decrease in glycosylated lysosomal membrane protein (GLMP) which is associated with iron metabolism in microglia undergoing ferroptosis. In situ injection of AAV9-Cx3cr1-shGlmp-eGFP to knock down GLMP specifically in microglia resulted in a significant increase in iron deposition and ferroptosis, leading to an expanded lesion area, aggravated neuronal loss, and subsequent inhibition of functional restoration. Our findings highlight the crucial role of GLMP in mitigating iron overload and ferroptosis in microglia, thereby contributing to axon retention and locomotor recovery after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。