Cytosolic bacterial pathogens activate TLR pathways in tumors that synergistically enhance STING agonist cancer therapies

细胞质细菌病原体激活肿瘤中的 TLR 通路,协同增强 STING 激动剂癌症疗法

阅读:7
作者:Meggie Danielson, Christopher J Nicolai, Thaomy T Vo, Natalie K Wolf, Thomas P Burke

Abstract

Intracellular bacterial pathogens are distinctive tools for fighting cancer, as they can proliferate in tumors and deliver therapeutic payloads to the eukaryotic cytosol. Cytosol-dwelling bacteria have undergone extensive preclinical and clinical testing, yet the mechanisms of activating innate immunity in tumors are unclear. We report that phylogenetically distinct cytosolic pathogens, including Listeria, Rickettsia, and Burkholderia species, elicited anti-tumor responses in poorly immunogenic melanoma and lymphoma in mice. Although the bacteria required cytosolic access, anti-tumor responses were largely independent of the cytosolic sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), but instead required Toll-like receptor (TLR) signaling. Combining pathogens with STING agonists elicited profound, synergistic anti-tumor effects with complete responses in >80% of mice. Small molecule TLR agonists also synergistically enhanced STING agonists. The responses required RAG2 but not interferons, and cured mice developed immunity to cancer rechallenge requiring CD8+ T cells. These studies provide a framework for enhancing microbial and small molecule innate agonists for cancer, via co-activating STING and TLRs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。