Network analysis identifies circulating miR-155 as predictive biomarker of type 2 diabetes mellitus development in obese patients: a pilot study

网络分析确定循环 miR-155 是肥胖患者 2 型糖尿病发展的预测生物标志物:一项初步研究

阅读:8
作者:Giuseppina Catanzaro #, Federica Conte #, Sofia Trocchianesi, Elena Splendiani, Viviana Maria Bimonte, Edoardo Mocini, Tiziana Filardi, Agnese Po, Zein Mersini Besharat, Maria Cristina Gentile, Paola Paci, Susanna Morano, Silvia Migliaccio #, Elisabetta Ferretti #

Abstract

Obesity is the main risk factor for many non-communicable diseases. In clinical practice, unspecific markers are used for the determination of metabolic alterations and inflammation, without allowing the characterization of subjects at higher risk of complications. Circulating microRNAs represent an attractive approach for early screening to identify subjects affected by obesity more at risk of developing connected pathologies. The aim of this study was the identification of circulating free and extracellular vesicles (EVs)-embedded microRNAs able to identify obese patients at higher risk of type 2 diabetes (DM2). The expression data of circulating microRNAs derived from obese patients (OB), with DM2 (OBDM) and healthy donors were combined with clinical data, through network-based methodology implemented by weighted gene co-expression network analysis. The six circulating microRNAs overexpressed in OBDM patients were evaluated in a second group of patients, confirming the overexpression of miR-155-5p in OBDM patients. Interestingly, the combination of miR-155-5p with serum levels of IL-8, Leptin and RAGE was useful to identify OB patients most at risk of developing DM2. These results suggest that miR-155-5p is a potential circulating biomarker for DM2 and that the combination of this microRNA with other inflammatory markers in OB patients can predict the risk of developing DM2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。