Anti-amnesic properties of (+/-)-PPCC, a novel sigma receptor ligand, on cognitive dysfunction induced by selective cholinergic lesion in rats

新型 σ 受体配体 (+/-)-PPCC 对大鼠选择性胆碱能损伤引起的认知功能障碍的抗遗忘作用

阅读:8
作者:Vuokko Antonini, Orazio Prezzavento, Marino Coradazzi, Agostino Marrazzo, Simone Ronsisvalle, Emanuela Arena, Giampiero Leanza

Abstract

Previous studies have reported that selective sigma-1 agonists may improve cognitive abilities in experimental animals possibly via a cholinergic mechanism. However, the issue of a direct action on to sigma-1 receptors in memory-related brain areas has been much less investigated. The newly synthetised compound methyl(1R,2S/1S,2R)-2-[4-hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl) cyclopropanecarboxylate [(+/-)-PPCC] has recently been shown to possess high affinity for the sigma-1 receptor where it specifically acts as an agonist. Here, the functional effects of (+/-)-PPCC were investigated in rat models of mild or severe cognitive dysfunction based on a sub-total (<or= 70-80%) or complete (>or= 90-95%) central cholinergic depletion induced by different doses of the selective immunotoxin 192 IgG-saporin injected intraventricularly. At 5-6 weeks post-surgery, the lesioned animals exhibited dose-dependent deficits in reference memory, as assessed using the Morris water maze task, whereas working memory abilities, evaluated using the radial arm water maze task, appeared equally impaired in the two dose groups. Daily treatment with (+/-)-PPCC significantly improved both reference and working memory performance in all lesioned animals but it did not affect intact or sham-lesioned subjects. In a separate test, treatment with (+/-)-PPCC reversed the learning deficits induced by the muscarinic receptor antagonist atropine sulphate in both control and mild-lesioned rats. The effect was blocked in lesioned, but not normal animals by pre-treatment with the sigma-1 antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine. The results suggest that (+/-)-PPCC may efficiently ameliorate perturbed cognitive abilities, and that these anti-amnesic effects most probably occur via a direct interaction of the compound with sigma-1 receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。