Targeting Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer by Inducing Epidermal Growth Factor Receptor Degradation via Methionine 790 Oxidation

通过蛋氨酸 790 氧化诱导表皮生长因子受体降解,靶向治疗酪氨酸激酶抑制剂耐药非小细胞肺癌

阅读:5
作者:Elaine Lai-Han Leung, Xing-Xing Fan, Maria Pik Wong, Zhi-Hong Jiang, Zhong-Qiu Liu, Xiao-Jun Yao, Lin-Lin Lu, Yan-Ling Zhou, Li-Fong Yau, Vicky Pui-Chi Tin, Liang Liu

Aims

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been developed to treat non-small cell lung cancer (NSCLC) patients with EGFR mutation, but TKI resistance is common. Almost half of the acquired resistance patients are due to additional T790M mutation on EGFR (EGFR(T790M)), thus overcoming TKI resistance is important. In this study, we aim to investigate the role of reactive oxygen species (ROS) in TKI resistance as well as the molecular and biological effects of EGFR(T790M) after redox manipulation.

Conclusion

Targeting EGFR by elevating ROS and redox imbalance is a potential new strategy to develop a new EGFR inhibitor for TKI-resistant patients with a wide therapeutic window between EGFR(T790M) and EGFR(WT).

Results

The basal ROS levels in EGFR(T790M)-containing TKI-resistant NSCLC cell lines were substantially high. Sixty-three human lung tumors showed higher NADPH oxidase isoform 2 (NOX2) expression than normal lung tissues, which may contribute to high basal ROS in cancer and poor survival. Interestingly, only NOX3 was upregulated by sanguinarine, a pharmacological agent to elevate ROS, and resulted in EGFR overoxidation, degradation, and apoptosis. By contrast, such responses were lacking in EGFR(WT) cells. Selective EGFR(T790M) degradation was manipulated by redox imbalance between NOX3 and methionine reductase A (MsrA). Furthermore, the in vivo tumor suppression effect of sanguinarine, NOX3 upregulation, and EGFR degradation were confirmed. Innovation: We have found a new treatment strategy to overcome TKI resistance by selectively inducing EGFR(T790M) degradation via specific stimulation of methionine 790 (M790) oxidation. It can be achieved via manipulating redox imbalance between NOX3 and MsrA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。