Novel APP/Aβ mutation K16N produces highly toxic heteromeric Aβ oligomers

新型 APP/Aβ 突变 K16N 产生高毒性异源 Aβ 寡聚体

阅读:7
作者:Daniela Kaden, Anja Harmeier, Christoph Weise, Lisa M Munter, Veit Althoff, Benjamin R Rost, Peter W Hildebrand, Dietmar Schmitz, Michael Schaefer, Rudi Lurz, Sabine Skodda, Raina Yamamoto, Sönke Arlt, Ulrich Finckh, Gerd Multhaup

Abstract

Here, we describe a novel missense mutation in the amyloid precursor protein (APP) causing a lysine-to-asparagine substitution at position 687 (APP770; herein, referred to as K16N according to amyloid-β (Aβ) numbering) resulting in an early onset dementia with an autosomal dominant inheritance pattern. The K16N mutation is located exactly at the α-secretase cleavage site and influences both APP and Aβ. First, due to the K16N mutation APP secretion is affected and a higher amount of Aβ peptides is being produced. Second, Aβ peptides carrying the K16N mutation are unique in that the peptide itself is not harmful to neuronal cells. Severe toxicity, however, is evident upon equimolar mixture of wt and mutant peptides, mimicking the heterozygous state of the subject. Furthermore, Aβ42 K16N inhibits fibril formation of Aβ42 wild-type. Even more, Aβ42 K16N peptides are protected against clearance activity by the major Aβ-degrading enzyme neprilysin. Thus the mutation characterized here harbours a combination of risk factors that synergistically may contribute to the development of early onset Alzheimer disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。