Translocating Peptides of Biomedical Interest Obtained from the Spike (S) Glycoprotein of the SARS-CoV-2

从 SARS-CoV-2 的刺突 (S) 糖蛋白中提取的具有生物医学意义的转运肽

阅读:9
作者:Maria C Henao, Camila Ocasion, Paola Ruiz Puentes, Cristina González-Melo, Valentina Quezada, Javier Cifuentes, Arnovis Yepes, Juan C Burgos, Juan C Cruz, Luis H Reyes

Abstract

At the beginning of 2020, the pandemic caused by the SARS-CoV-2 virus led to the fast sequencing of its genome to facilitate molecular engineering strategies to control the pathogen's spread. The spike (S) glycoprotein has been identified as the leading therapeutic agent due to its role in localizing the ACE2 receptor in the host's pulmonary cell membrane, binding, and eventually infecting the cells. Due to the difficulty of delivering bioactive molecules to the intracellular space, we hypothesized that the S protein could serve as a source of membrane translocating peptides. AHB-1, AHB-2, and AHB-3 peptides were identified and analyzed on a membrane model of DPPC (dipalmitoylphosphatidylcholine) using molecular dynamics (MD) simulations. An umbrella sampling approach was used to quantify the energy barrier necessary to cross the boundary (13.2 to 34.9 kcal/mol), and a flat-bottom pulling helped to gain a deeper understanding of the membrane's permeation dynamics. Our studies revealed that the novel peptide AHB-1 exhibited comparable penetration potential of already known potent cell-penetrating peptides (CPPs) such as TP2, Buforin II, and Frenatin 2.3s. Results were confirmed by in vitro analysis of the peptides conjugated to chitosan nanoparticles, demonstrating its ability to reach the cytosol and escape endosomes, while maintaining high biocompatibility levels according to standardized assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。