Disruption of clathrin-dependent trafficking results in the failure of grass carp reovirus cellular entry

网格蛋白依赖性运输的中断导致草鱼呼肠孤病毒无法进入细胞

阅读:18
作者:Hao Wang, Weisha Liu, Fei Yu, Liqun Lu

Background

Grass carp reovirus (GCRV) is responsible for viral hemorrhagic disease in cultured grass carp (Ctenopharyngon idellus). GCRV is a non-enveloped, double-stranded RNA virus in the genus Aquareovirus, of the family Reoviridae, which encodes seven structural proteins (VP1-VP7) and five nonstructural proteins (NS80, NS38, NS31, NS26, and NS16). To date, the mechanism of GCRV entry into CIK Ctenopharyngon idellus kidney (CIK) cells remains poorly understood.

Conclusion

Our findings suggest that GCRV might enter CIK cells via clathrin-mediated endocytosis in a pH-dependent manner. Additionally, dynamin is critical for efficient viral entry.

Results

Here, we present a study of the GCRV internalization mechanism in CIK cells. Our results indicated that GCRV infection was inhibited by chlorpromazine, the specific inhibitor for clathrin-mediated endocytosis. Colocalization of GCRV virions with endogenous clathrin was observed during early infection by confocal microscopy. Moreover, GCRV infection of CIK cells depended on acidification of the endosome. This was indicated by significant inhibition of viral infection following prophylactic treatment with the lysosomotropic drugs chloroquine or ammonium chloride. In addition, the disturbance of dynamin activity blocked GCRV entry, which confirmed the dynamin-dependent nature of clathrin-mediated endocytosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。