Inhibition of hepatitis C virus (HCV) replication by specific RNA aptamers against HCV NS5B RNA replicase

针对 HCV NS5B RNA 复制酶的特异性 RNA 适体可抑制丙型肝炎病毒 (HCV) 复制

阅读:10
作者:Chang Ho Lee, Young Ju Lee, Ji Hyun Kim, Jong Hoon Lim, Jung-Hye Kim, Wonkyo Han, Soo-Han Lee, Gyu-Jeong Noh, Seong-Wook Lee

Abstract

This study identified specific and avid RNA aptamers consisting of 2'-hydroxyl- or 2'-fluoropyrimidines against hepatitis C virus (HCV) NS5B replicase, an enzyme that is essential for HCV replication. These aptamers acted as potent decoys to competitively impede replicase-catalyzed RNA synthesis activity. Cytoplasmic expression of the 2'-hydroxyl aptamer efficiently inhibited HCV replicon replication in human liver cells through specific interaction with, and sequestration of, the target protein without either off-target effects or escape mutant generation. A selected 2'-fluoro aptamer could be truncated to a chemically manufacturable length of 29 nucleotides (nt), with increase in the affinity to HCV NS5B. Noticeably, transfection of the truncated aptamer efficiently suppressed HCV replication in cells without escape mutant appearance. The aptamer was further modified through conjugation of a cholesterol or galactose-polyethylene glycol ligand for in vivo availability and liver-specific delivery. The conjugated aptamer efficiently entered cells and inhibited genotype 1b subgenomic and genotype 2a full-length HCV JFH-1 RNA replication without toxicity and innate immunity induction. Importantly, a therapeutically feasible amount of the conjugated aptamer was delivered in vivo to liver tissue in mice. Therefore, cytoplasmic expression of 2'-hydroxyl aptamer or direct administration of chemically synthesized and ligand-conjugated 2'-fluoro aptamer against HCV NS5B could be a potent anti-HCV approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。