A Doubly Fmoc-Protected Aspartic Acid Self-Assembles into Hydrogels Suitable for Bone Tissue Engineering

双 Fmoc 保护的天冬氨酸自组装成适用于骨组织工程的水凝胶

阅读:11
作者:Katerina Petropoulou, Varvara Platania, Maria Chatzinikolaidou, Anna Mitraki

Abstract

Hydrogels have been used as scaffolds for biomineralization in tissue engineering and regenerative medicine for the repair and treatment of many tissue types. In the present work, we studied an amino acid-based material that is attached to protecting groups and self-assembles into biocompatible and stable nanostructures that are suitable for tissue engineering applications. Specifically, the doubly protected aspartic residue (Asp) with fluorenyl methoxycarbonyl (Fmoc) protecting groups have been shown to lead to the formation of well-ordered fibrous structures. Many amino acids and small peptides which are modified with protecting groups display relatively fast self-assembly and exhibit remarkable physicochemical properties leading to three-dimensional (3D) networks, the trapping of solvent molecules, and forming hydrogels. In this study, the self-assembling fibrous structures are targeted toward calcium binding and act as nucleation points for the binding of the available phosphate groups. The cell viability, proliferation, and osteogenic differentiation of pre-osteoblastic cells cultured on the formed hydrogel under various conditions demonstrate that hydrogel formation in CaCl2 and CaCl2-Na2HPO4 solutions lead to calcium ion binding onto the hydrogels and enrichment with phosphate groups, respectively, rendering these mechanically stable hydrogels osteoinductive scaffolds for bone tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。