Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension

腺苷酸活化蛋白激酶是肺动脉平滑肌细胞存活和缺氧性肺动脉高压发展的必要条件

阅读:6
作者:Joyce Christina F Ibe, Qiyuan Zhou, Tianji Chen, Haiyang Tang, Jason X-J Yuan, J Usha Raj, Guofei Zhou

Abstract

Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate-activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。