IGFBP5 antisense and short hairpin RNA (shRNA) constructs improve erectile function by inducing cavernosum angiogenesis in diabetic mice

IGFBP5 反义和短发夹 RNA (shRNA) 构建体通过诱导糖尿病小鼠的阴茎海绵体血管生成来改善勃起功能

阅读:5
作者:Jiyeon Ock, Jun-Kyu Suh, Soon-Sun Hong, Ju-Hee Kang, Guo Nan Yin, Ji-Kan Ryu

Background

The incidence of diabetic erectile dysfunction (ED) is rapidly increasing, and due to the severe angiopathy caused by diabetes, current drugs are ineffective at treating ED. Insulin-like growth factor-binding protein 5 (IGFBP5) promotes cell death and induces apoptosis in various cell types. Objectives: To evaluate the effectiveness of IGFBP5 knockdown in improving erectile function in diabetic mice. Materials and

Conclusion

Knockdown of IGFBP5 improved erectile function in diabetic mice by promoting cell proliferation and reducing apoptosis and permeability. Local inhibition of IGFBP5 expression may provide a new treatment strategy for diabetic ED and other ischemic vascular or neurological diseases.

Methods

Diabetes was induced by injecting streptozotocin (STZ) intraperitoneally into male 8-week-old C57BL/6 mice. Eight weeks after diabetes induction, mice were divided into four groups: a nondiabetic control group and three STZ-induced diabetic mice groups, which were administered intracavernous injections of phosphate buffered saline, scrambled control shRNA, or shRNA targeting mouse IGFBP5 (shIGFBP5) lentivirus particles. Two weeks later, we measured erectile function by electrically stimulating the bilateral cavernous nerve. To mimic diabetic angiopathy, primary cavernous endothelial cells (MCECs) from healthy mice were cultured and treated with glucose.

Results

IGFBP5 expression in MCECs or cavernous tissues were significantly increased under diabetic conditions, and knockdown of IGFBP5 induced MCECs angiogenic activity under high-glucose conditions. STZ-induced diabetic mice had reduced erectile function, but shIGFBP5 treatment resulted in significant improvements (to 90% of the nondiabetic control group level). Furthermore, in diabetic mice, numbers of cavernous endothelial cells, pericytes, and neuronal cells were increased by shIGFBP5 treatment, which also increased eNOS Ser1177 phosphorylation, decreased permeability and apoptosis of cavernous endothelial cells. In addition, IGFBP5 was found to mediate the AKT, ERK, p38 signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。