Mechanical Stimulation and Aligned Poly(ε-caprolactone)-Gelatin Electrospun Scaffolds Promote Skeletal Muscle Regeneration

机械刺激和取向聚己内酯-明胶静电纺丝支架促进骨骼肌再生

阅读:2
作者:Francisco José Calero-Castro ,Víctor Manuel Perez-Puyana ,Imán Laga ,Javier Padillo Ruiz ,Alberto Romero ,Fernando de la Portilla de Juan

Abstract

The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 μm) were thinner than in random scaffolds (11.55 ± 3.39 μm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 μm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality. Keywords: PCL; biomaterials; electrospinning; gelatin; scaffolds; skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。