Mechanically robust supramolecular polymer co-assemblies

机械强度高的超分子聚合物共组装体

阅读:5
作者:Julien Sautaux, Franziska Marx, Ilja Gunkel, Christoph Weder, Stephen Schrettl

Abstract

Supramolecular polymers are formed through non-covalent, directional interactions between monomeric building blocks. The assembly of these materials is reversible, which enables functions such as healing, repair, or recycling. However, supramolecular polymers generally fail to match the mechanical properties of conventional commodity plastics. Here we demonstrate how strong, stiff, tough, and healable materials can be accessed through the combination of two metallosupramolecular polymers with complementary mechanical properties that feature the same metal-ligand complex as binding motif. Co-assembly yields materials with micro-phase separated hard and soft domains and the mechanical properties can be tailored by simply varying the ratio of the two constituents. On account of toughening and physical cross-linking effects, this approach affords materials that display higher strength, toughness, or failure strain than either metallosupramolecular polymer alone. The possibility to combine supramolecular building blocks in any ratio further permits access to compositionally graded objects with a spatially modulated mechanical behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。