Deficiency in microfibril-associated glycoprotein-1 leads to complex phenotypes in multiple organ systems

微纤维相关糖蛋白-1的缺乏导致多个器官系统出现复杂的表型

阅读:8
作者:Justin S Weinbaum, Thomas J Broekelmann, Richard A Pierce, Claudio C Werneck, Fernando Segade, Clarissa S Craft, Russell H Knutsen, Robert P Mecham

Abstract

Microfibril-associated glycoprotein-1 (MAGP-1) is a small molecular weight component of the fibrillin-rich microfibril. Gene-targeted inactivation of MAGP-1 reveals a complex phenotype that includes increased body weight and size due to excess body fat, an altered wound healing response in bone and skin, and a bleeding diathesis. Elastic tissues rich in MAGP-1-containing microfibrils develop normally and show normal function. The penetrance of MAGP-1-null phenotypes is highly variable and mouse strain-dependent, suggesting the influence of modifier genes. MAGP-1 was found to bind active transforming growth factor-beta (TGF-beta) and BMP-7 with high affinity, suggesting that it may be an important modulator of microfibril-mediated growth factor signaling. Many of the phenotypic traits observed in MAGP-1-deficient mice are consistent with loss of TGF-beta function and are generally opposite those associated with mutations in fibrillin-1 that result in enhanced TGF-beta signaling. Increased body size and fat deposition in MAGP-1-mutant animals are particularly intriguing given the localization of obesity traits in humans to the region on chromosome 1 containing the MAGP-1 gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。