Fluorescence Liquid Biopsy for Cancer Detection Is Improved by Using Cationic Dendronized Hyperbranched Polymer

利用阳离子树枝状超支化聚合物改进用于癌症检测的荧光液体活检

阅读:5
作者:Violeta Morcuende-Ventura, Sonia Hermoso-Durán, Natalia Abian-Franco, Roberto Pazo-Cid, Jorge L Ojeda, Sonia Vega, Oscar Sanchez-Gracia, Adrian Velazquez-Campoy, Teresa Sierra, Olga Abian

Background

Biophysical techniques applied to serum samples characterization could promote the development of new diagnostic tools. Fluorescence spectroscopy has been previously applied to biological samples from cancer patients and differences from healthy individuals were observed. Dendronized hyperbranched polymers (DHP) based on bis(hydroxymethyl)propionic acid (bis-MPA) were developed in our group and their potential biomedical applications explored. (2)

Conclusions

We have applied FLB as a quick, simple, and minimally invasive promising technique in cancer diagnosis. The classification performance of the diagnostic method was further improved by using DHP-bMPA, which interacted differentially with serum samples from healthy and diseased subjects. These preliminary results set the basis for a larger study and move FLB closer to its clinical application, providing useful information for the oncologist during patient diagnosis.

Methods

A total of 94 serum samples from diagnosed cancer patients and healthy individuals were studied (20 pancreatic ductal adenocarcinoma, 25 blood donor, 24 ovarian cancer, and 25 benign ovarian cyst samples). (3)

Results

Fluorescence spectra of serum samples (fluorescence liquid biopsy, FLB) in the presence and the absence of DHP-bMPA were recorded and two parameters from the signal curves obtained. A secondary parameter, the fluorescence spectrum score (FSscore), was calculated, and the diagnostic model assessed. For pancreatic ductal adenocarcinoma (PDAC) and ovarian cancer, the classification performance was improved when including DHP-bMPA, achieving high values of statistical sensitivity and specificity (over 85% for both pathologies). (4) Conclusions: We have applied FLB as a quick, simple, and minimally invasive promising technique in cancer diagnosis. The classification performance of the diagnostic method was further improved by using DHP-bMPA, which interacted differentially with serum samples from healthy and diseased subjects. These preliminary results set the basis for a larger study and move FLB closer to its clinical application, providing useful information for the oncologist during patient diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。