Modeling the Double Layer Capacitance Effect in Electrolyte Gated FETs with Gel and Aqueous Electrolytes

使用凝胶和水性电解质模拟电解质门控场效应晶体管的双层电容效应

阅读:5
作者:Roslyn S Massey, Ravi Prakash

Abstract

Potential implementation of bio-gel Electrolyte Double Layer capacitors (bio-gel EDLCs) and electrolyte-gated FET biosensors, two commonly reported configurations of bio-electrolytic electronic devices, requires a robust analysis of their complex internal capacitive behavior. Presently there is neither enough of the parameter extraction literature, nor an effective simulation model to represent the transient behavior of these systems. Our work aims to supplement present transient thin film transistor modelling techniques with the reported parameter extraction method, to accurately model both bio-gel EDLC and the aqueous electrolyte gated FET devices. Our parameter extraction method was tested with capacitors analogous to polymer-electrolyte gated FETs, electrolyte gated Field effect transistor (EGOFET) and Organic Electrolyte Gated Field Effect Transistor (OEGFET) capacitance stacks. Our method predicts the input/output electrical behavior of bio-gel EDLC and EGOFET devices far more accurately than conventional DLC techniques, with less than 5% error. It is also more effective in capturing the characteristic aqueous electrolyte charging behavior and maximum charging capability which are unique to these systems, than the conventional DLC Zubieta and the Two branch models. We believe this significant improvement in device simulation is a pivotal step towards further integration and commercial implementation of organic bio-electrolyte devices. The effective reproduction of the transient response of the OEGFET equivalent system also predicts the transient capacitive effects observed in our previously reported label-free OEGFET biosensor devices. This is the first parameter extraction method specifically designed for electrical parameter-based modelling of organic bio-electrolytic capacitor devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。