An automated microscopy workflow to study Shigella-neutrophil interactions and antibiotic efficacy in vivo

用于研究志贺氏菌-中性粒细胞相互作用和抗生素体内疗效的自动显微镜工作流程

阅读:6
作者:Arthur Lensen, Margarida C Gomes, Ana Teresa López-Jiménez, Serge Mostowy

Abstract

Shigella are Gram-negative bacterial pathogens responsible for bacillary dysentery (also called shigellosis). The absence of a licensed vaccine and widespread emergence of antibiotic resistance has led the World Health Organisation (WHO) to highlight Shigella as a priority pathogen requiring urgent attention. Several infection models have been useful to explore the Shigella infection process; yet, we still lack information regarding events taking place in vivo. Here, using a Shigella-zebrafish infection model and high-content microscopy, we developed an automated microscopy workflow to non-invasively study fluorescently labelled bacteria and neutrophils in vivo. We applied our workflow to antibiotic-treated zebrafish, and demonstrate that antibiotics reduce bacterial burden and not neutrophil recruitment to the hindbrain ventricle. We discovered that nalidixic acid (a bactericidal antibiotic) can work with leukocytes in an additive manner to control Shigella flexneri infection and can also restrict dissemination of Shigella sonnei from the hindbrain ventricle. We envision that our automated microscopy workflow, applied here to study the interactions between Shigella and neutrophils as well as antibiotic efficacy in zebrafish, can be useful to innovate treatments for infection control in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。