Exploring the time-dependent regulatory potential of microRNAs in breast cancer cells treated with proteasome inhibitors

探索用蛋白酶体抑制剂治疗的乳腺癌细胞中微小RNA的时间依赖性调控潜力

阅读:17
作者:Katerina Katsaraki, Christos K Kontos, Gerasimos Ardavanis-Loukeris, Alexandros A Tzovaras, Diamantis C Sideris, Andreas Scorilas

Conclusions

The diversity of pathways predicted to be affected by the diversity in miRNA expression after treatment with PIs paves the way for the recognition of new regulatory axes in BrCa.

Methods

Four BrCa cell lines of distinct molecular subtypes were treated with these PIs. Cell viability and IC50 concentrations were determined. Total RNA was extracted, polyadenylated, and reversely transcribed. Next, the levels of specific miRNAs with a significant role in BrCa were determined using relative quantification, and their regulatory effect was assessed.

Purpose

Breast cancer (BrCa) is a predominant type of cancer with a disparate molecular nature. MicroRNAs (miRNAs) have emerged as promising key players in the regulation of pathological processes in BrCa. Proteasome inhibitors (PIs) emerged as promising anticancer agents for several human malignancies, including BrCa, inhibiting the function of the proteasome. Aiming to shed light on the miRNA regulatory effect in BrCa after treatment with PIs, we used two PIs, namely bortezomib and carfilzomib. Materials and

Results

High heterogeneity was discovered in the levels of miRNAs in the four cell lines, after treatment. The miRNA levels fluctuate with distinct patterns, in 24, 48, or 72 hours. Interestingly, miR-1-3p, miR-421-3p, and miR-765-3p appear as key molecules, as they were found deregulated, in almost all combinations of cell lines and PIs. In the SK-BR-3 cell line, the majority of the miRNAs were significantly downregulated in treated compared to untreated cells, with miR-21-5p being the only one upregulated. Finally, various significant biological processes, molecular functions, and pathways were predicted to be affected. Conclusions: The diversity of pathways predicted to be affected by the diversity in miRNA expression after treatment with PIs paves the way for the recognition of new regulatory axes in BrCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。