Fe3O4@C@MCM41-guanidine core-shell nanostructures as a powerful and recyclable nanocatalyst with high performance for synthesis of Knoevenagel reaction

Fe3O4@C@MCM41-胍核壳纳米结构作为一种高效、可回收的纳米催化剂,可用于合成 Knoevenagel 反应

阅读:7
作者:Aliyeh Barzkar, Alireza Salimi Beni

Abstract

In this study, preparation, characterization and catalytic application of a novel core-shell structured magnetic with carbon and mesoporous silica shells supported guanidine (Fe3O4@C@MCM41-guanidine) are developed. The Fe3O4@C@MCM41-guanidine was prepared via surfactant directed hydrolysis and condensation of tetraethyl orthosilicate around Fe3O4@C NPs followed by treatment with guanidinium chloride. This nanocomposite was characterized by using Fourier transform infrared spectroscopy, vibrating sample magnetometry, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, thermal gravimetric analysis, wide-angle X-ray diffraction and low-angle X-ray diffraction techniques. This nanocomposite have high thermal, chemical stability, and uniform size. Fe3O4@C@MCM41-guanidine catalyst demonstrated high yield (91-98%) to prepare of Knoevenagel derivatives under the solvent free conditions at room temperature in the shortest time. Also, this catalyst was recovered and reused 10 times without significant decrease in efficiency and stability. Fortunately, an excellent level of yield (98-82%) was observed in the 10 consecutive catalyst cycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。