The Effect of Replication Protein A Inhibition and Post-Translational Modification on ATR Kinase Signaling

复制蛋白 A 抑制和翻译后修饰对 ATR 激酶信号的影响

阅读:6
作者:Matthew R Jordan, Greg G Oakley, Lindsey D Mayo, Lata Balakrishnan, John J Turchi

Abstract

The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair towards ensuring genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions, termed RPA-DBi, and RPA protein-protein interactions, termed RPA-PPIi; both activities are required for ATR activation. Here, we employ a biochemically reconstituted ATR kinase signaling pathway and demonstrate that both RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of downstream target proteins. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation has no effect on ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway targeted cancer therapeutics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。