Inhibition of transient receptor potential vanilloid type 1 through α2 adrenergic receptors at peripheral nerve terminals relieves pain

抑制外周神经末梢处的瞬时受体电位香草酸 1 型至 α2 肾上腺素受体可缓解疼痛

阅读:4
作者:Yumi Matsushita, Miki Manabe, Issei Kitagawa, Masashi Higuchi, Yoshinao Z Hosaka, Naoki Kitamura

Abstract

The activation of α2 adrenergic receptors contributes to analgesia not only in the central nervous system but also in the peripheral nervous system. We reported that noradrenaline inhibits the activity of transient receptor potential vanilloid 1 (TRPV1) evoked by capsaicin through α2 receptors in cultured rat dorsal root ganglion (DRG) neurons. However, it is unclear whether activation of TRPV1 expressed in peripheral nerve terminals is inhibited by α2 receptors and whether this phenomenon contributes to analgesia. Therefore, we examined effects of clonidine, an α2 receptor agonist, on several types of nociceptive behaviors, which may be caused by TRPV1 activity, and subtypes of α2 receptors expressed with TRPV1 in primary sensory neurons in rats. Capsaicin injected into hind paws evoked nociceptive behaviors and clonidine preinjected into the same site inhibited capsaicin-evoked responses. This inhibition was not observed when clonidine was injected into the contralateral hind paws. Preinjection of clonidine into the plantar surface of ipsilateral, but not contralateral, hind paws reduced the sensitivity to heat stimuli. Clonidine partially reduced formalin-evoked responses when it was preinjected into ipsilateral hind paws. The expression level of α2C receptor mRNA quantified by real-time PCR was highest followed by those of α2A and α2B receptors in DRGs. α2A and α2C receptor-like immunoreactivities were detected with TRPV1-like immunoreactivities in the same neurons. These results suggest that TRPV1 and α2 receptors are coexpressed in peripheral nerve terminals and that the functional association between these two molecules causes analgesia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。