Enhanced therapeutic potential of a self-healing hyaluronic acid hydrogel for early intervention in osteoarthritis

自修复透明质酸水凝胶在早期干预骨关节炎方面的治疗潜力增强

阅读:6
作者:Dongze Wu, Shuhui Yang, Zhe Gong, Xinxin Zhu, Juncong Hong, Haitao Wang, Wenbin Xu, Juncheng Lai, Xiumei Wang, Jiye Lu, Xiangqian Fang, Guoqiang Jiang, Jinjin Zhu

Abstract

Osteoarthritis (OA) is characterized by symptoms such as abnormal lubrication function of synovial fluid and heightened friction on the cartilage surface in its early stages, prior to evident cartilage damage. Current early intervention strategies employing lubricated hydrogels to shield cartilage from friction often overlook the significance of hydrogel-cartilage adhesion and enhancement of the cartilage extracellular matrix (ECM). Herein, we constructed a hydrogel based on dihydrazide-modified hyaluronic acid (HA) (AHA) and catechol-conjugated aldehyde-modified HA (CHA), which not only adheres to the cartilage surface as an effective lubricant but also improves the extracellular environment of chondrocytes in OA. Material characterization experiments on AHA/CHA hydrogels with varying concentrations validated their exceptional self-healing capabilities, superior injectability and viscoelasticity, sustained adhesion strength to cartilage, and a low friction coefficient. Chondrocytes exhibited robust adhesion and proliferation on the AHA/CHA hydrogel surface, with the upregulation of cartilage matrix protein expression. Intra-articular injection of AHA/CHA hydrogels was performed following destabilization of the medial meniscus (DMM) surgery in mice to assess its protective effect on cartilage. The AHA/CHA hydrogel effectively attenuated the degree of cartilage wear, facilitated chondrocytes' anabolic metabolism, and restored the ECM of cartilage. Therefore, the AHA/CHA hydrogel emerges as a promising therapeutic approach in clinical practices of OA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。