The Whitish Inner Mantle of the Giant Clam, Tridacna squamosa, Expresses an Apical Plasma Membrane Ca2+-ATPase (PMCA) Which Displays Light-Dependent Gene and Protein Expressions

巨型砗磲(Tridacna squamosa)的白色内层外套膜表达一种顶端质膜 Ca2+-ATPase (PMCA),该酶会显示光依赖性基因和蛋白质表达

阅读:5
作者:Yuen K Ip, Kum C Hiong, Enan J K Goh, Mel V Boo, Celine Y L Choo, Biyun Ching, Wai P Wong, Shit F Chew

Abstract

Giant clams live in symbiosis with extracellular zooxanthellae and display high rates of growth and shell formation (calcification) in light. Light-enhanced calcification requires an increase in the supply of Ca2+ to, and simultaneously an augmented removal of H+ from, the extrapallial fluid where shell formation occurs. We have obtained the complete coding cDNA sequence of Plasma Membrane Ca2+-ATPase (PMCA) from the thin and whitish inner mantle, which is in touch with the extrapallial fluid, of the giant clam Tridacna squamosa. The deduced PMCA sequence consisted of an apical targeting element. Immunofluorescence microscopy confirmed that PMCA had an apical localization in the shell-facing epithelium of the inner mantle, whereby it can actively secrete Ca2+ in exchange for H+. More importantly, the apical PMCA-immunofluorescence of the shell-facing epithelium of the inner mantle increased significantly after 12 h of exposure to light. The transcript and protein levels of PMCA/PMCA also increased significantly in the inner mantle after 6 or 12 h of light exposure. These results offer insights into a light-dependable mechanism of shell formation in T. squamosa and a novel explanation of light-enhanced calcification in general. As the inner mantle normally lacks light sensitive pigments, our results support a previous proposition that symbiotic zooxanthellae, particularly those in the colorful and extensible outer mantle, may act as light-sensing elements for the host clam.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。