Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1

缺氧诱导因子 1 和失调的 c-Myc 协同诱导血管内皮生长因子和代谢开关己糖激酶 2 和丙酮酸脱氢酶激酶 1

阅读:5
作者:Jung-whan Kim, Ping Gao, Yen-Chun Liu, Gregg L Semenza, Chi V Dang

Abstract

Hypoxia is a pervasive microenvironmental factor that affects normal development as well as tumor progression. In most normal cells, hypoxia stabilizes hypoxia-inducible transcription factors (HIFs), particularly HIF-1, which activates genes involved in anaerobic metabolism and angiogenesis. As hypoxia signals a cellular deprivation state, HIF-1 has also been reported to counter the activity of MYC, which encodes a transcription factor that drives cell growth and proliferation. Since many human cancers express dysregulated MYC, we sought to determine whether HIF-1 would in fact collaborate with dysregulated MYC rather countering its function. Here, using the P493-6 Burkitt's lymphoma model with an inducible MYC, we demonstrate that HIF-1 cooperates with dysregulated c-Myc to promote glycolysis by induction of hexokinase 2, which catalyzes the first step of glycolysis, and pyruvate dehydrogenase kinase 1, which inactivates pyruvate dehydrogenase and diminishes mitochondrial respiration. We also found the collaborative induction of vascular endothelial growth factor (VEGF) by HIF-1 and dysregulated c-Myc. This study reports the previously unsuspected collaboration between HIF-1 and dysregulated MYC and thereby provides additional insights into the regulation of VEGF and the Warburg effect, which describes the propensity for cancer cells to convert glucose to lactate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。