Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis

转录调控因子与染色质修饰复合物SAGA之间的相互作用微调铁稳态

阅读:6
作者:Manjit Kumar Srivastav, Neha Agarwal, Poonam Poonia, Krishnamurthy Natarajan

Abstract

The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。