Enhancement of guinea pig cytomegalovirus infection by two endogenously expressed components of the pentameric glycoprotein complex in epithelial cells

上皮细胞中五聚体糖蛋白复合物的两个内源性表达成分增强豚鼠巨细胞病毒感染

阅读:3
作者:Misaki Okumura #, Miku Matsuura-Miura #, Reina Makino, Takuya Miura, Kazuma Noguchi, Ryuichi Majima, Tetsuo Koshizuka, Naoki Inoue

Abstract

A better understanding of the mechanisms underlying cell tropisms and the efficiency of viral infection is critical for the development of vaccines and antiviral drugs for viral diseases. In this study, we worked on the entry mechanisms of guinea pig cytomegalovirus and found that endogenous expression of a combination of two components (GP131 and GP133) of the pentameric glycoprotein complex, which is required for non-fibroblast cell tropisms, enhanced viral infection more than 10-fold. In addition, D138A alteration in GP131 increased this enhancement by an additional 10-fold. Although differences in the efficiency of viral infection among various cell types are usually explained by differences in viral entry or traffic processes, our experimental evidences dismissed such possibilities. Instead, our findings that i) endogenous expression of GP131 and GP133 after nuclear delivery of viral DNA still enhanced infection and ii) an HDAC inhibitor overcame the need of the endogenous expression led us to hypothesize a novel mechanism that controls the efficiency of viral infection through the activation of gene expression from viral DNA delivered to the nuclei. Further studies of this unexpected phenomena warrant to understand novel but also general mechanisms for cell tropisms of viral infection and determinants that control infection efficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。