Fucoidan alginate and sulfated alginate microbeads induce distinct coagulation, inflammatory and fibrotic responses

褐藻糖胶藻酸盐和硫酸化藻酸盐微珠可诱发不同的凝血、炎症和纤维化反应

阅读:3
作者:Kalaiyarasi Vasuthas, Joachim Sebastian Kjesbu, Alessandro Brambilla, Maya Levitan, Abba Elizabeth Coron, Davi M Fonseca, Berit L Strand, Geir Slupphaug, Anne Mari A Rokstad

Abstract

This study investigates the host response to fucoidan alginate microbeads in comparison to sulfated alginate microbeads, which are relevant for immune protection in cell therapy. While sulfated alginate microbeads reduce fibrosis and inflammation, fucoidan, a kelp-derived polysaccharide rich in sulfate groups, has not been evaluated in this context. The study assesses surface reactivity to acute-phase proteins and cytokines using ex vivo human whole blood and plasma models. It also examines pericapsular overgrowth (PFO) in C57BL/6JRj mice, incorporating protein pattern mapping through LC-MS/MS proteomics. Fucoidan alginate microbeads activated complement and coagulation, while both fucoidan and sulfated alginate microbeads induced plasmin activity. Fucoidan alginate microbeads exhibited a distinct cytokine profile, characterized by high levels of MCP-1, IL-8, IFN-γ, and reduced levels of RANTES, Eotaxin, PDGF-BB, TGF-β isoforms, along with higher PFO. The balance between plasmin activity and coagulation emerged as a potential predictor of fibrosis resistance, favouring sulfated alginate microbeads. Explanted materials were enriched with both complement and coagulation activators (Complement C1q and C3, Factor 12, Kallikrein, HMW-kininogen) and inhibitors (C1-inhibitor, Factor H, Factor I). Fucoidan alginate microbeads predominantly enriched extracellular matrix factors (Fibrinogen, Collagen, TGF-β, Bmp), while sulfated alginate microbeads favoured ECM-degrading proteases (Metalloproteases and Cathepsins). This study reveals significant differences in host responses to fucoidan and sulfated alginate in microbeads. The plasmin activity to coagulation ratio is highlighted as a key indicator of fibrosis resistance. Additionally, the preferential enrichment of ECM-degrading proteases on the material surface post-implantation proved to be another crucial factor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。