Exposure of decidualized HIESC to low oxygen tension and leucine deprivation results in increased IGFBP-1 phosphorylation and reduced IGF-I bioactivity

蜕膜化 HIESC 暴露于低氧张力和亮氨酸缺乏会导致 IGFBP-1 磷酸化增加和 IGF-I 生物活性降低

阅读:4
作者:Majida Abu Shehab, Kyle Biggar, Sahil Sagar Singal, Karen Nygard, Shawn Shun-Cheng Li, Thomas Jansson, Madhulika B Gupta

Abstract

Phosphorylation of decidual IGFBP-1 enhances binding of IGF-I, limiting the bioavailability of this growth factor which may contribute to reduced placental and fetal growth. The mechanisms regulating decidual IGFBP-1 phosphorylation are incompletely understood. Using decidualized human immortalized endometrial stromal cells we tested the hypothesis that low oxygen tension or reduced leucine availability, believed to be common in placental insufficiency, increase the phosphorylation of decidual IGFBP-1. Multiple reaction monitoring-MS (MRM-MS) was used to quantify IGFBP-1 phosphorylation. MRM-MS validated the novel phosphorylation of IGFBP-1 at Ser58, however this site was unaffected by low oxygen tension/leucine deprivation. In contrast, significantly elevated phosphorylation was detected for pSer119, pSer98/pSer101 and pSer169/pSer174 sites. Immunoblotting and dual-immunofluorescence using phosphosite-specific IGFBP-1 antibodies further demonstrated increased IGFBP-1 phosphorylation in HIESC under both treatments which concomitantly reduced IGF-I bioactivity. These data support the hypothesis that down regulation of IGF-I signaling links decidual IGFBP-1 hyperphosphorylation to restricted fetal growth in placental insufficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。