YopT domain of the PfhB2 toxin from Pasteurella multocida: protein expression, characterization, crystallization and crystallographic analysis

多杀性巴氏杆菌 PfhB2 毒素的 YopT 结构域:蛋白质表达、表征、结晶和晶体学分析

阅读:5
作者:Sanjeev Kumar, Victoria Hedrick, Seema Mattoo

Abstract

Pasteurella multocida causes respiratory-tract infections in a broad range of animals, as well as opportunistic infections in humans. P. multocida secretes a multidomain toxin called PfhB2, which contains a YopT-like cysteine protease domain at its C-terminus. The YopT domain of PfhB2 contains a well conserved Cys-His-Asp catalytic triad that defines YopT family members, and shares high sequence similarity with the prototype YopT from Yersinia sp. To date, only one crystal structure of a YopT family member has been reported; however, additional structural information is needed to help characterize the varied substrate specificity and enzymatic action of this large protease family. Here, a catalytically inactive C3733S mutant of PfhB2 YopT that provides enhanced protein stability was used with the aim of gaining structural insight into the diversity within the YopT protein family. To this end, the C3733S mutant of PfhB2 YopT has been successfully cloned, overexpressed, purified and crystallized. Diffraction data sets were collected from native crystals to 3.5 Å resolution and a single-wavelength anomalous data set was collected from an iodide-derivative crystal to 3.2 Å resolution. Data pertaining to crystals belonging to space group P31, with unit-cell parameters a = 136.9, b = 136.9, c = 74.7 Å for the native crystals and a = 139.2, b = 139.2, c = 74.7 Å for the iodide-derivative crystals, are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。