Ignored role of polyphenol in boosting reactive oxygen species generation for polyphenol/chemodynamic combination therapy

多酚在促进多酚/化学动力学联合疗法中的活性氧生成中的作用被忽视

阅读:5
作者:Huijia Mao, Yangyang Wen, Yonghui Yu, Hongyan Li, Jing Wang, Baoguo Sun

Abstract

Chemodynamic therapy (CDT) is a promising tumor-specific treatment, but still suffering insufficient reactive oxygen species (ROS) levels due to its limited efficacy of Fenton/Fenton-like reaction. Polyphenol, as a natural reductant, has been applied to promote the efficacy of Fenton/Fenton-like reactions; however, its intrinsic pro-apoptosis effects was ignored. Herein, a novel CDT/polyphenol-combined strategy was designed, based on Avenanthramide C-loaded dendritic mesoporous silica (DMSN)-Au/Fe3O4 nanoplatforms with folic acid modification for tumor-site targeting. For the first time, we showed that the nanocomplex (DMSNAF-AVC-FA) induced ROS production in the cytoplasm via Au/Fe3O4-mediated Fenton reactions and externally damaged the mitochondrial membrane; simultaneously, the resultant increased mitochondrial membrane permeability can facilitate the migration of AVC into mitochondrial, targeting the DDX3 pathway and impairing the electron transport chain (ETC) complexes, which significantly boosted the endogenous ROS levels inside the mitochondrial. Under the elevated oxidative stress level via both intra- and extra-mitochondrial ROS production, the maximum mitochondrial membrane permeability was achieved by up-regulation of Bax/Bcl-2, and thereby led to massive release of Cytochrome C and maximum tumor cell apoptosis via Caspase-3 pathway. As a result, the as-designed strategy achieved synergistic cytotoxicity to 4T1 tumor cells with the cell apoptosis rate of 99.12% in vitro and the tumor growth inhibition rate of 63.3% in vivo, while very minor cytotoxicity to normal cells with cell viability of 95.4%. This work evidenced that natural bioactive compounds are powerful for synergistically boosting ROS level, providing new insight for accelerating the clinical conversion progress of CDT with minimal side effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。