Chondrocyte targeting gold nanoparticles protect growth plate against inflammatory damage by maintaining cartilage balance

针对软骨细胞的金纳米粒子通过维持软骨平衡保护生长板免受炎症损伤

阅读:11
作者:Xue Bai, Hongyan Sun, Lina Jia, Junjie Xu, Peng Zhang, Deyuan Zhang, Yu Gu, Bo Chen, Lin Feng

Abstract

Cartilage destruction caused by inflammation is a clinical challenge. Many studies have investigated cartilage destruction in adults, but little research was conducted on children. In this study, the protective effect of gold nanoparticles (AuNPs) on the cartilage of children was realized by counteracting chondrocyte apoptosis and extracellular matrix (ECM) degradation in a young mouse model of lipopolysaccharide (LPS)-induced growth plate (GP) cartilage damage. Initially, engineered AuNPs can be efficiently absorbed by chondrocytes, approximately 20 times the amount absorbed by macrophages, resulting in a 29% ± 0.05% increase in chondrocyte viability. Then, AuNPs exposure significantly reduced the release of inflammatory cytokines and secretion of ECM degradation factors induced by LPS. Subsequently, AuNPs were applied to resist LPS-induced cartilage destruction in young mice. AuNPs inhibited the formation of gaps, without chondrocytes and extracellular matrix, between the proliferative and hypertrophy zones of the GP cartilage, and the gaps were noticeable in the LPS group. This finding can be attributed to the capability of AuNPs to reduce the LPS-induced apoptosis rate of mouse chondrocytes by 72.38% and the LPS-induced ECM degradation rate by 70.89%. Further analysis demonstrated that remission is partly due to AuNPs' role in maintaining the balance of catabolic and anabolic factors in the ECM. Altogether, these findings indicate that AuNPs can partially protect the cartilage of children from inflammatory damage by suppressing chondrocyte apoptosis and ECM degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。