The CSN5/HSF/SPI1/PU.1 Axis Regulates Cell Proliferation in Hypocellular Myelodysplastic Syndrome Patients

CSN5/HSF/SPI1/PU.1 轴调节低细胞性骨髓增生异常综合征患者的细胞增殖

阅读:6
作者:Zheng-Ping Yu, Zi-Ying Jian, Ai-Ning Sun, Bao-An Chen, Zheng Ge

Conclusions

Our research revealed the regulatory role of the CSN5/HSF/SPI1/PU.1 axis in hypocellular MDS, providing a probable target for clinical intervention.

Methods

We isolated cells from normal individuals and MDS patients, and the mRNA and protein expression levels of spi1/pu.1 in cd34+ cells (hematopoietic stem cells) were measured by PCR and western blotting, respectively. A ChIP assay was used to detect the binding of HSF1 to the spi1/pu.1 promoter in cd34+ cells. The ubiquitination of HSF1 in cd34+ cells was detected by CO-IP. The binding of HSF1 and Fbxw7α was detected in in cd34+ cells by CO-IP. The binding of HSF1 and CSN5 was evaluated. A luciferase reporter assay was used to detect the effect of STAT3 on CSN5 promoter activation in cd34+ cells. Western blotting was used to detect the phosphorylation of STAT3 in cd34+ cells of MDS patients. The binding of STAT3 and C/EBP beta in cd34+ cells was detected by CO-IP.

Objective

This study explored the relationship between the activation of the jak/stat3 signaling pathway and the CSN5 gene transcript and protein expression levels in the hematopoietic stem cells of patients with myelodysplastic syndromes (MDSs). This study also aimed to investigate the correlation between the expression level of CSN5 and the deubiquitination of HSF1, as well as the transcript level of the spi1/pu.1 genes to explore the pathogenesis of MDS. Materials and

Results

Inhibition of SPI1/PU.1 expression was observed in MDS samples with low proliferation ability. Further experiments proved that phosphorylation of STAT3 affected CSN5 function and mediated the ubiquitination of HSF, the upstream regulator of SPI1/PU.1 transcription, which led to the inhibition of SPI1/PU.1 expression. Restoration of CSN5 rescued the inhibition of HSF1 ubiquitination, causing SPI1/PU.1 transcription to resume and increasing SPI1/PU.1 expression, promoting the recovery of cell proliferation in hypocellular MDS. Conclusions: Our research revealed the regulatory role of the CSN5/HSF/SPI1/PU.1 axis in hypocellular MDS, providing a probable target for clinical intervention.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。