Exposure to salinity induces oxidative damage and changes in the expression of genes related to appetite regulation in Nile tilapia (Oreochromis niloticus)

盐度暴露会引起尼罗罗非鱼(Oreochromis niloticus)的氧化损伤和食欲调节相关基因表达的变化

阅读:5
作者:Amanda W S Martins, Eduardo N Dellagostin, Eduardo B Blödorn, Tony Leandro R Silveira, Luis A Sampaio, Eliza R Komninou, Antonio S Varela Junior, Carine D Corcini, Leandro S Nunes, Mariana H Remião, Gilberto L Collares, William B Domingues, Vinicius F Campos

Abstract

Variations in water salinity and other extrinsic factors have been shown to induce changes in feeding rhythms and growth in fish. However, it is unknown whether appetite-related hormones mediate these changes in Nile tilapia (Oreochromis niloticus), an important species for aquaculture in several countries. This study aimed to evaluate the expression of genes responsible for appetite regulation and genes related to metabolic and physiological changes in tilapia exposed to different salinities. Moreover, the study proposed to sequence and to characterize the cart, cck, and pyy genes, and to quantify their expression in the brain and intestine of the fish by quantitative polymerase chain reaction (qPCR). The animals were exposed to three salinities: 0, 6, and 12 parts per thousand (ppt) of salt for 21 days. Furthermore, lipid peroxidation, reactive oxygen species, DNA damage, and membrane fluidity in blood cells were quantified by flow cytometry. The results indicated an increased expression of cart, pyy, and cck and a decreased expression of npy in the brain, and the same with cck and npy in the intestine of fish treated with 12 ppt. This modulation and other adaptive responses may have contributed to the decrease in weight gain, specific growth rate, and final weight. In addition, we showed oxidative damage in blood cells resulting from increasing salinity. These results provide essential data on O. niloticus when exposed to high salinities that have never been described before and generate knowledge necessary for developing biotechnologies that may help improve the production of economically important farmed fish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。