Disinfectant resistance of Salmonella in in vitro contaminated poultry house models and investigation of efficient disinfection methods using these models

体外污染禽舍模型中沙门氏菌的消毒剂耐药性以及利用这些模型进行有效消毒方法的研究

阅读:5
作者:Ikuyo Ohashi, Sota Kobayashi, Yukino Tamamura-Andoh, Nobuo Arai, Daisuke Takamatsu

Abstract

Salmonellaenterica subsp. enterica (Salmonella) shows disinfectant resistance by forming biofilms on solid surfaces. However, efficient disinfection methods to eliminate Salmonella biofilms from farms have not yet been examined in detail. In this study, more than 80% of Salmonella strains from farms in Yamagata prefecture, Japan, were biofilm producers. Regardless of the extent of their biofilm formation ability, their biofilms were highly resistant to hypochlorous acid on plastic surfaces. To establish efficient disinfection methods in farms, we developed in vitro Salmonella-contaminated poultry house models by depositing dust on ceramic and stainless-steel carriers in poultry houses for one month and culturing a representative Salmonella strain on the carriers. Biofilm-like structures, including Salmonella-like cells, were observed on the models by scanning electron microscopy. Salmonella was not efficiently removed from the models even by cleaning with a surfactant at 25/65°C and disinfection with quaternary ammonium compound or hypochlorous acid at 25°C; on the contrary, viable Salmonella cells increased in some tests under these conditions, suggesting that these models successfully simulate the highly persistent characteristics of Salmonella in farms. However, the persistent bacterial cells were markedly decreased by soaking in 65°C surfactant followed by rinsing with 80°C water, additional cleaning using chlorine dioxide or disinfection with dolomitic lime, suggesting the effectiveness of these methods against Salmonella in farms. Since many different disinfection conditions may be easily tested in laboratories, our models will be useful tools for establishing effective and practical disinfection methods in farms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。