In situ gelatinase-responsive and thermosensitive nanocomplex for local therapy of gastric cancer with peritoneal metastasis

原位明胶酶响应和热敏纳米复合物用于腹膜转移胃癌局部治疗

阅读:5
作者:Xinyue Wang, Jiahui Gao, Chunhua Li, Chen Xu, Xiang Li, Fanyan Meng, Qin Liu, Qin Wang, Lixia Yu, Baorui Liu, Rutian Li

Abstract

Intraperitoneal chemotherapy (IPC) has been considered as an effective therapy for advanced gastric cancer (GC) especially those with peritoneal metastasis, while limited effectiveness, complications caused by chemotherapeutics and repeated infusion procedures restrict the application of IPC. In this study, to enhance the efficacy and safety of IPC, we intended to establish a biocompatible and biodegradable nanocomplex composed of intelligent gelatinase-responsive nanoparticles (NPs) and thermosensitive gel, which were prepared from different compositions of poly (ethyleneglycol)-poly (3-caprolactone) (PEG-PCL). Cancer stem cells (CSCs) inhibitor Salinomycin (SAL) and non-CSC inhibitor Docetaxel (DOC) were co-loaded in the NPs and delivered by liquid PEG-PCL-PEG gel (PECE) at room temperature, which was able to target tumor and formed a gel in situ at body temperature. Compared with free SAL-DOC solution administered at the same dose, PECE NP group inhibited intraperitoneal disseminated gastric cancer growth more remarkably, some of which even achieved complete response (CR) and continued for more than 2 weeks. Cytometric analysis of cellular suspension from abdominal tumor tissues showed that the proportion of CSCs (CD44+CD133+) and the expression of PD-L1 on the tumor cells in the PECE NP group were the lowest. In the allograft mouse models of GC, PECE NP significantly improved the infiltration of M1 macrophages into the tumor bed in vivo. This design may provide biodegradable smart drug-delivery system for potential application in IPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。