The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region

长链非编码 RNA Kcnq1ot1 通过促进 H3K27me3 积累到基因内 MyoD 结合区来控制肌肉细胞中的母体 p57 表达

阅读:6
作者:Oriella Andresini, Marianna Nicoletta Rossi, Francesca Matteini, Stefano Petrai, Tiziana Santini, Rossella Maione

Background

The cell-cycle inhibitor p57kip2 plays a critical role in mammalian development by coordinating cell proliferation and differentiation in many cell types. p57kip2 expression is finely regulated by several epigenetic mechanisms, including paternal imprinting. Kcnq1ot1, a long non-coding RNA (LncRNA), whose gene maps to the p57Kip2 imprinting domain, is expressed exclusively from the paternal allele and participates in the cis-silencing of the neighboring imprinted genes through chromatin-level regulation. In light of our previous evidence of a functional interaction between myogenic factors and imprinting control elements in the regulation of the maternal p57Kip2 allele during muscle differentiation, we examined the possibility that also Kcnq1ot1 could play an imprinting-independent role in the control of p57Kip2 expression in muscle cells.

Conclusions

These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions.

Results

We found that Kcnq1ot1 depletion by siRNA causes the upregulation of the maternal and functional p57Kip2 allele during differentiation, suggesting a previously undisclosed role for this LncRNA. Consistently, Chromatin Oligo-affinity Precipitation assays showed that Kcnq1ot1 physically interacts not only with the paternal imprinting control region of the locus, as already known, but also with both maternal and paternal alleles of a novel p57Kip2 regulatory region, located intragenically and containing two binding sites for the muscle-specific factor MyoD. Moreover, chromatin immunoprecipitation assays after Kcnq1ot1 depletion demonstrated that the LncRNA is required for the accumulation of H3K27me3, a chromatin modification catalyzed by the histone-methyl-transferase EZH2, at the maternal p57kip2 intragenic region. Finally, upon differentiation, the binding of MyoD to this region and its physical interaction with Kcnq1ot1, analyzed by ChIP and RNA immunoprecipitation assays, correlate with the loss of EZH2 and H3K27me3 from chromatin and with p57Kip2 de-repression. Conclusions: These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。