Fingolimod does not prevent syndecan-4 shedding from the endothelial glycocalyx in a cultured human umbilical vein endothelial cell model of vascular injury

在培养的人脐静脉内皮细胞血管损伤模型中,芬戈莫德不能阻止多配体蛋白聚糖-4 从内皮糖萼中脱落

阅读:5
作者:Elissa M Milford, Lara Meital, Anna Kuballa, Michael C Reade, Fraser D Russell

Background

Shedding of the endothelial glycocalyx (EG) is associated with poor outcomes in a range of conditions including sepsis. Fresh frozen plasma (FFP) restores the damaged EG to baseline thickness, however the mechanism for this effect is unknown, and some components of FFP have adverse effects unrelated to the EG. There is some limited evidence that sphingosine-1-phosphate (S1P) within FFP restores the EG by activating the endothelial cell S1P receptor 1 (S1PR1). However, there are disadvantages to using S1P clinically as an EG restorative therapy. A potential alternative is the S1PR agonist fingolimod (FTY720). The

Conclusions

FTY720 did not prevent syndecan-4 shedding from the EG in the HUVEC model of endothelial injury, suggesting that activation of S1PR does not prevent EG damage. FFP prevented syndecan-4 shedding from the EG via a mechanism that was independent of S1PR1 and upregulation of SDC-4 production. Further studies to examine whether FTY720 or another S1PR agonist might have EG-protective effects under different conditions are warranted, as are investigations seeking the mechanism of EG protection conferred by FFP in this experimental model.

Methods

Shedding of the EG was induced in cultured human umbilical vein endothelial cells (HUVECs) by exposure to adrenaline, TNF-α and H2O2. The cells were then assigned to one of six conditions for 4 h: uninjured and untreated, injured and untreated, injured and treated with FTY720 with and without the S1PR1 inhibitor W146, and injured and treated with 25% FFP with and without W146. Syndecan-4, a component of the EG, was measured in cell supernatants, and syndecan-4 and thrombomodulin mRNA expression was quantitated in cell lysates.

Results

The injury resulted in a 2.1-fold increase in syndecan-4 (p < 0.001), consistent with EG shedding. Syndecan-4 and thrombomodulin mRNA expression was increased (p < 0.001) and decreased (p < 0.05), respectively, by the injury. Syndecan-4 shedding was not affected by treatment with FTY720, whereas FFP attenuated syndecan-4 shedding back to baseline levels in the injured cells and this was unaffected by W146. Neither treatment affected syndecan-4 or thrombomodulin mRNA expression. Conclusions: FTY720 did not prevent syndecan-4 shedding from the EG in the HUVEC model of endothelial injury, suggesting that activation of S1PR does not prevent EG damage. FFP prevented syndecan-4 shedding from the EG via a mechanism that was independent of S1PR1 and upregulation of SDC-4 production. Further studies to examine whether FTY720 or another S1PR agonist might have EG-protective effects under different conditions are warranted, as are investigations seeking the mechanism of EG protection conferred by FFP in this experimental model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。