A space-time tradeoff for implementing a function with master equation dynamics

用主方程动力学实现函数的时空权衡

阅读:6
作者:David H Wolpert, Artemy Kolchinsky, Jeremy A Owen

Abstract

Master equations are commonly used to model the dynamics of physical systems, including systems that implement single-valued functions like a computer's update step. However, many such functions cannot be implemented by any master equation, even approximately, which raises the question of how they can occur in the real world. Here we show how any function over some "visible" states can be implemented with master equation dynamics-if the dynamics exploits additional, "hidden" states at intermediate times. We also show that any master equation implementing a function can be decomposed into a sequence of "hidden" timesteps, demarcated by changes in what state-to-state transitions have nonzero probability. In many real-world situations there is a cost both for more hidden states and for more hidden timesteps. Accordingly, we derive a "space-time" tradeoff between the number of hidden states and the number of hidden timesteps needed to implement any given function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。