Development of a magnified sunlight responsive shape memory bio-composite: effects of titanium nitride (TiN) nanoparticles on a bio-based benzoxazine/epoxy copolymer

放大阳光响应形状记忆生物复合材料的开发:氮化钛 (TiN) 纳米粒子对生物基苯并恶嗪/环氧共聚物的影响

阅读:1
作者:Anandraj Joseph, Ibrahim Lawan, Krittapas Charoensuk, Panuwat Luengrojanakul, Phattarin Mora, Cheol-Hee Ahn, Sarawut Rimdusit

Abstract

This study uniquely explored the effects of loading titanium nitride (TiN) nanoparticles in a bio-based benzoxazine/epoxy copolymer on the shape memory performance of the resulting composite using normal and magnified sunlight irradiation stimuli scenarios. Additionally, the effects of loading the TiN nanoparticles in the copolymer on light absorbance capacity, thermal stability, visco-elastic properties, and tensile properties of the composites were analysed. Results reveal that the different loading amounts (1 to 7 wt%) of TiN dispersed well within the copolymer matrix and produced excellent composite samples (TiN-1(wt%), TiN-3(wt%), TiN-5(wt%), and TiN-7(wt%)). Interestingly, the obtained samples were found to exhibit improved light absorbance in the wavelength range of 200-900 nm, giving the samples greater sunlight absorbing capacity. Moreover, the thermal stability of the composites increases with an increase in the loading amount; for instance, the initial degradation temperature increased from 316 °C to 324 °C. Meanwhile, visco-elastic and tensile properties increased and reached the optimum for TiN-5(wt%), where 3.1 GPa and 10.4 MPa were recorded as storage modulus and tensile stress, respectively. Consequent to these improvements in the properties of the composites, the shape memory performance of the composites was positively impacted. For instance, average shape fixity ratio, shape recovery ratio, and recovery time of 95%, 96%, and 38 seconds, respectively, were achieved with TiN-7(wt%), which represents 19%, 17%, and 38% improvements, respectively, compared to when the neat copolymer (TiN-0(wt%)) was used using magnified sunlight irradiation stimulus. Overall, this finding provides the basis for the utilization of magnified sunlight irradiation stimulus to achieve excellent shape memory performance with TiN-filled polymer composites.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。